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Vaibhav Donde, Member, IEEE, Vanessa López, Bernard Lesieutre, Senior Member, IEEE,
Ali Pinar, Member, IEEE, Chao Yang, and Juan Meza

Abstract—We propose a computationally efficient approach to
detect severe multiple contingencies. We pose a contingency anal-
ysis problem using a nonlinear optimization framework, which en-
ables us to detect the fewest possible transmission line outages re-
sulting in a system failure of specified severity, and to identify the
most severe system failure caused by removing a specified number
of transmission lines from service. Illustrations using a three-bus
system and the IEEE 30-bus system aim to exhibit the effectiveness
of the proposed approach.

Index Terms—Load flow analysis, load shedding, optimization
methods, power system reliability, power system security.

I. INTRODUCTION

ROBUST operation of a power grid requires anticipation
of unplanned component outages that could lead to dra-

matic and costly blackouts. Planning and operating criteria are
designed in order that “the interconnected power system shall be
operated at all times so that general system instability, uncon-
trolled separation, cascading outages, or voltage collapse, will
not occur as a result of any single contingency or multiple con-
tingencies of sufficiently high likelihood” [1]. Additional, more
specific criteria help to achieve this famous criterion in
practice. In this paper we consider the potential effects of the
loss of multiple elements. Specifically, we pose the following
two related optimization problems: 1) minimize the number of
failure events that will necessitate a minimum amount of (speci-
fied) loss of load to maintain the integrity of the grid, and 2) cal-
culate the maximum loss of load that would be required to sur-
vive a (specified) limited number of events, in any possible com-
bination. For example, we could identify a minimum number of
events that would require the loss of 1000 MW of load, or we
might calculate the most load shedding (and location) for any

scenario. We believe these “worst-case” analyses of the
more general problem are interesting in their own right.
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They can provide planners and operators more confidence in
the security of the system beyond the requirement. Fur-
thermore we recognize that we now operate under conditions
in which there is concern about the possibility of purposeful
and malicious scenarios. Such concerns may be best ad-
dressed by identifying scenarios that have severe conse-
quences.

In this paper we consider the problem in a static sense through
the examination of operating points in relation to the feasibility
boundary of the power flow equations. Analysis of the power
flow feasibility boundary has received considerable attention in
the literature. Most notably it has been widely studied in terms
of the use of bifurcation theory to calculate margins for secure
operation relative to voltage collapse and dynamic instability.
Many articles discuss this general topic (see [6] and references
therein, for an overview). The most relevant to the present work
are those that calculate a minimum distance to the feasibility
boundary from an operating point (for a fixed network topology)
[3], [10], [11], [13], [21]. This past work has also established the
geometrical interpretations of a direction of best load shedding
strategy in the space of load powers. For instance, Alvarado et
al. [3] computed the point on the feasibility boundary closest
to the present operating point, that is, the minimum change in
power injections that would result in operation at the edge of
feasibility. This closest point on the feasibility boundary pro-
vided a measure of the security margin for the given network
topology, and it provided the best direction for load shedding.
Our approach is motivated by those interpretations. Moreover,
we allow the network topology to change in order to incorporate
transmission line failures.

Our primary contribution in this paper is to propose a method
for identifying the fewest network topological changes (removal
of transmission lines) that result in operating point infeasibility,
such that the amount of minimum load shedding required for
feasible operation is greater than a user-defined threshold. Thus
we deal with changes in network topology and the operating
point simultaneously within the same mathematical framework.
The amount of required load shedding provides a measure of the
severity of the event.

Since a static framework is used, the multiple contingencies
we examine should be considered to occur simultaneously or
in short succession, before the system is redispatched to a new
operating point. Likewise the minimal load reduction suggested
by our solutions would need to be affected quickly to avoid an
even larger disturbance. Details of dynamic response, operator
actions, and automatic controls are not modeled in this paper.
Rather, we intend that the contingencies identified using our

0885-8950/$25.00 © 2008 IEEE



DONDE et al.: SEVERE MULTIPLE CONTINGENCY SCREENING IN ELECTRIC POWER SYSTEMS 407

screening techniques will be used to define the scenarios for de-
tailed dynamic studies. We note that the severity of the events
identified could be different when dynamics are considered.

Mathematically, we work with a nonlinear optimization
problem in terms of both network active and reactive powers
and pose the problem as a mixed integer nonlinear optimization
problem. Then we solve this problem through a two stage
analysis. In the first stage, we force the feasibility boundary to
move past the nominal operating point (rendering it infeasible)
by a user-specified distance, through alterations to the network.
A relaxation technique, similar to that used in [14], is employed
to identify a small set of line outages that will contract the
feasibility boundary by at least the required amount. This set of
lines is further processed in the second stage. Detailed
analysis is performed considering only subsets of the lines
identified in the first stage. Given that such lines are typically
few in number, the computational burden of the analysis
in the second stage is far less than a complete analysis of all
lines in the system.

A similar problem of multiple contingency identification
has been addressed by other researchers. Salmeron et al.
[22] employed a bilevel optimization framework along with
mixed-integer linear programming to analyze the security of
electric grids under terrorist threat. The critical elements of the
grid were identified by maximizing the long-term disruption in
the power system operation caused by terrorist attacks based
upon limited offensive resources. The bilevel programming
framework has also been used by Arroyo and Galiana [4]. In all
these formulations the bilevel optimization framework appears
promising at identifying critical system vulnerabilities.

We emphasize that we pursue a deterministic, worst-case
framework because we would like to anticipate events that
include those arising from malicious design. For a probabilistic
approach to analysis for naturally occurring events, the
reader may consider the stochastic approach proposed in [8].

The static collapse of power systems is closely associated
with network topology. Our previous work [12] showed that
an approximate power flow description provides a way to re-
late static collapse with graph partitioning using spectral graph
theory. Grijalva and Sauer [16], [17] related topological cuts
with the static collapse based on branch complex flows. He et
al. [18] used a voltage stability margin index to identify weak
locations in a power network. Although the connections of static
collapse with graph theory are useful and interesting in their own
right, they remain approximate and qualitative at this stage and
are not discussed further in this paper.

II. PROBLEM DESCRIPTION

Conceptually, we aim to identify a small set of transmission
lines whose removal from service would minimally necessitate
a reduction in load to avoid a potentially severe blackout. We
consider the minimum load lost after the failure occurs to be the
measure of the severity of the event. Thus, we pose the funda-
mental question: what is the least altered network topology that
makes the power flow infeasible at the nominal load distribu-
tion, and for which the minimum amount of load required to be
shed to make the power flow feasible again is greater than some
specified severity threshold?

Fig. 1. Schematic view of load shedding process in the space of active load
powers.

A schematic view of the load shedding process is provided
in Fig. 1. The solid-lined curve represents the nominal power
flow feasibility boundary when all the lines are in service. The
nominal operating point lies within the feasible region of
operation. When a few lines are removed from service, the fea-
sible region shrinks and the boundary moves to the one shown
as a dashed-line. The minimal load shedding strategy moves the
original operating point to an operating point that lies on
the new feasibility boundary. The amount of the total load shed-
ding, for instance, , corresponds to a measure of severity.
Note that the feasibility boundaries may be nonconvex in gen-
eral, although they appear convex in the schematic representa-
tion shown in Fig. 1.

In our analysis we consider a lossless power system network
having buses (nodes) and lines (branches). Let and
be, respectively, vectors whose components are given by the ac-
tive and reactive power injections at the buses. Due to the loss-
less character of the system, we have , however,

as part of the reactive power is consumed in the
network.

It is natural to cast our problem as a mixed integer nonlinear
programming (MINLP) problem, which is difficult to solve, in
part due to the complexity and nonconvexity of the model, and
in part because our decision variables are binary (a line is either
in service, or not). In our mathematical description we define
indicator variables to represent whether a line is in
service: a value of is nominal and indicates that the line
is in service. MINLP problems are notoriously hard to solve,
and the general purpose tools are of limited availability. In this
work, we use a continuous relaxation technique to show the va-
lidity of our models. Solving the MINLP formulation remains
an important problem, and we are currently working on methods
that can exploit the problem specific structure. However, these
efforts are beyond the scope of this paper, and in this work, we
first attempt to find an optimal solution to a relaxed problem in
which the integer variables are allowed to take on continuous
values, i.e., . We allow this in the first stage of our
screening algorithm. Then the relaxed solution is processed to
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explore the nearby true integer solutions using a detailed model.
We do this in the second stage of our screening.

It is interesting to note that this common relaxation proce-
dure has an obvious interpretation in our power system model.
Instead of the line being either in service, or out of service, the
line admittance is allowed to vary between its nominal value and
zero. While this appeals to our intuition, we caution the reader
that there are important differences between a monitored line of
any admittance, and the absence of that line which removes its
constraint on the model. We view the relaxation used in the first
stage as a technique for approaching this difficult integer opti-
mization problem. It is appealing from a computational point of
view, but might yield suboptimal results. In this paper, however,
we will occasionally appeal to the reader’s intuition in terms of
reduced admittances.

The network angle variables and voltage magnitudes are de-
noted by vectors and , respectively, and matrix is a diag-
onal matrix of line susceptances.1 The active and reactive power
flow equations (with modified admittances) can be written in
matrix form as

(1)

(2)

where is the branch-node incidence matrix of the network
graph. Each row of contains a single entry equal to 1 and
a single entry equal to , at locations corresponding to the
terminal buses of the lines, and . is a diagonal
matrix with

which simply evaluates to the product corresponding to a
line connecting buses and . is the identity matrix, is a
diagonal matrix with

is defined by

and denotes a vector whose th component is equal to
. Similar notation is used to define and .

This model form is chosen to highlight the topological infor-
mation in the network incidence matrix . Direct expansion of
these expressions will yield the power flow equations in stan-
dard form. Refer to [9] and [23] for more details on this model.

Most work documented in the literature in this context as-
sumes the notion of a slack bus. The choice of the slack bus is
typically arbitrary and it often serves to supply network losses.

1It is assumed for simplicity that the lines are lossless and shunt elements are
absent. However the mathematical framework and the formulations proposed in
later sections do not require this assumption.

Moreover, in the event of load shedding or load pick up, the
slack bus is assumed to provide the net reduction or increment
in the loads. It is well known, but often understated, that the re-
sults depend upon the choice of the slack bus. In this study, we
use a distributed slack bus, where the net reduction in load due to
load shedding is accounted for by every generator in the system
lowering their respective dispatches in proportion to their gener-
ating capacities.2 This eliminates the aspect of arbitrariness that
the results contain when a particular bus is used as a slack bus.
This choice of distributed slack is motivated by the presence of
droop governor controls on generators in which the response to
a disturbance is distributed in a uniform manner among the gen-
erators. In the WECC system, for example, generators have 5%
droop governor controls [2].

We note that due to the incorporation of a single unified dis-
tributed slack mechanism in our framework, all the generators
in the system are redispatched in proportion to their nominal
dispatches in response to load shedding, even when line failures
result in system islanding (disconnected groups or partitions).
Multiple distributed slack mechanisms would be more appro-
priate while dealing with cases when there is partitioning of the
graph underlying the system network. Such an approach can be
easily followed once the partitioning details are known. How-
ever we note that the analysis presented in this paper does not ex-
plicitly address issues related to system islanding and graph par-
titioning. Finally we remark that, although the aforementioned
distributed slack mechanism has been adopted for this study, the
contingency screening approach we propose is general enough
to allow the use of other distributed slacks or load redispatching
mechanisms.

A. Power Flow Model, Load Shedding, and Distributed Slack

Suppose that the system has PV (generator) buses and
PQ (load) buses, such that the total buses are . Let

and be the vectors of active power injections at PV
and PQ buses, respectively, at the original operating point .
Let be a vector representing a reduction in the active
load powers due to load shedding. In general, some PQ buses in
the network will not have any load connected to them. In other
words, such buses will have no load shedding activity associated
with them. Corresponding components of the vector are set to
zero. It is assumed that the loads are constant power factor loads,
so that the relationship holds, where rep-
resents a vector of reactive power injections at PQ buses and

is a diagonal matrix. Hence, the reduction in reactive load
powers is equal to . In the space of active load powers, the
vector provides a direction for load shedding, whose compo-
nents are schematically represented in Fig. 1.

Note that all the elements of are nonnegative; loads may
decrease but not increase. Due to the adopted notion of a dis-
tributed slack bus and the lossless character of the network, the
net reduction in the active power load due to load shedding, i.e.,

, where , is accounted for by a
reduction in generation at every PV bus. With our choice of dis-
tributed slack bus, the change in power at each generator is in

2The notion of a distributed slack has been used in other applications. See,
for example, [7] and [24].
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direct proportion to its nominal dispatch relative to the total dis-
patch. The net reduction in active power injections at PV buses
is given by the product , where is a (nonpositive) scalar.
It follows from the conservation of active power that we must
have , therefore

(3)

Finally, we assume here that generator voltage controls act to
maintain voltage magnitudes at the PV buses at their nominal
values; thus, one need only consider the reactive power equa-
tions in (2) corresponding to PQ buses. Then, using (1)–(2),
the power flow description at the new operating point that
is achieved after load shedding is given by

(4)

(5)

(6)

where is as in (3), and denote, re-
spectively, the left-hand side from (1) corresponding to PV and
PQ buses, and represents the left-hand side from
(2) corresponding to PQ buses. For a given network topology,
the system of equations (4)–(6) geometrically represents an

-manifold in the space of variables .
We remark that no angle reference is provided in the power

flow description (4)–(6). As a result, the power flow Jacobian

(7)

has a trivial zero eigenvalue with as the cor-
responding left eigenvector, where

, and denotes the left-hand side of (4)–(6). This
is also apparent from the structure of (1)–(2) and the fact that
the sum of the elements in each row of the incidence matrix
is equal to zero. Note that satisfies

(8)

B. Obtaining a (Locally) Best Load Shedding Strategy

Referring to Fig. 1, a best load shedding strategy is sought that
moves the initial operating point to a new operating point

, such that a minimum amount of load is lost. Results in the
literature related to this topic have employed a 2-norm notion
of distance to a feasible operating point, see for example [5]. In
practice, since our emphasis is on minimum load shedding, it
is more appropriate to express our distance in a 1-norm sense.
That is, we are more interested in the simple sum of lost load
than the sum of squared lost load.

Typically the 2-norm measure is more amenable to mathe-
matical analysis than the 1-norm; however, we argue that the
1-norm better characterizes our interests. It measures the total
lost load, while the 2-norm measures a more abstract quantity
equal to the sum of squares of lost load. Typically, the 1-norm

introduces an aspect of non-smoothness in the analysis, and thus
may increase the complexity of the problem. As mentioned in
Section II-A, in the present case every load is only allowed to
be shed as opposed to being increased. This requires all the ele-
ments of to have the same sign, in particular they need to be all
nonnegative in the present framework. This observation greatly
reduces the complexity that the problem would encounter oth-
erwise, and simplifies to (which would otherwise be

). To determine such a load shedding strategy, consider the
following optimization problem

(9)

(10)

(11)

(12)

(13)

where (10) denotes the system (4)–(6) for a given network
topology (i.e., for fixed ), such that it does not have a solution
at . Inequality constraints (11)–(13) ensure that the vari-
ables are within bounds. Note, in particular, that (11) ensures
the validity of this formulation by enforcing nonnegativity of
elements of vector . It also ensures that the upper limit on the
amount of load shedding is defined by the nominal load, thus
preventing the loads to act as generators. Voltage magnitudes
at PQ buses are bounded by upper and lower limits and

, respectively, as indicated by (12). This constraint ensures
that the voltages are within acceptable limits, even after load
shedding. With a good choice of , this constraint also
serves to exclude low voltage (steady state unstable) solutions
from consideration. Constraint (13) guarantees that the phase
angles across the transmission lines are in a range acceptable
for a steady state stable operation of the power system.

The Lagrangian corresponding to (9)–(13) is

(14)

where and are vectors of Lagrange multi-
pliers. Optimal solutions to this problem satisfy the following
Karush–Kuhn–Tucker conditions

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)
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along with (10)–(13). Thus the vector that provides the
best load shedding strategy is obtained by solving (10) and
(15)–(22), while satisfying the inequalities (11)–(13) and
(23). The notation “ ” in (17)–(22) is used to indicate compo-
nent-wise multiplication of associated vectors.

When the inequality constraints (11)–(13) are inactive, we
have . Referring to (16), this results in ,
which in turn makes a left eigenvector of corresponding to
its zero eigenvalue. Note that must have an extra (nontrivial)
zero eigenvalue, as does not satisfy (15) and
(8) simultaneously. In other words, equals , where is a
left eigenvector of corresponding to its nontrivial zero eigen-
value. For this case, it is insightful to appreciate the geometrical
interpretation of (15)–(16). Consider a hyperplane tangent to the
manifold defined by (10). Vectors on that tangent
hyperplane satisfy

(24)

Premultiplying with the eigenvector results in

(25)

However, as the first term in (25) vanishes to zero, we must
have . This implies that the normal
to the power flow feasibility boundary at is given by

. It also follows from (15) that this normal aligns
with when the inequality constraints are inactive.

C. Constrained Optimization Problem

Our formulation of the contingency screening problem em-
ploys the mechanisms of best load shedding strategy, distributed
slack and binary line indicator variables, described in the pre-
vious sections. Note that we seek to move both the original
operating point and the power flow feasibility boundary.
This boundary is moved past such that the minimum load
shedding required to move to a different operating point
lying on the new boundary is greater than the minimum desired
severity of the blackout. Mathematically, the problem takes the
following form:

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

Constraints (27) denotes the power flow equations (10),
now with as an additional variable. Together, constraints
(27)–(39) are the Karush–Kuhn–Tucker conditions as obtained
in Section II-B; they are repeated here for clarity. These con-
straints help us avoid explicitly solving a bilevel optimization
problem. Constraint (40) limits variables to binary values.
Constraint (41) ensures the total amount of load shed is greater
than , a positive-valued user-defined parameter that indi-
cates the minimum severity of lost load.

By virtue of the distributed slack mechanism, all the genera-
tors contribute to the load shedding in the same proportion. This
ensures that all the generators must reduce (not increase) their
dispatches to account for load shedding, thus in turn ensuring
that their upper dispatch capacity limits are never hit. This also
guarantees that all generators will reach the lower dispatching
limit (assumed as zero) simultaneously, when all the load in the
system is shed. Thus a constraint that limits generator dispatches
is not included in the set of constraints (27)–(41). Note, how-
ever, that if the lower dispatching limits are nonzero, constraints
enforcing such limits can be added to the set (27)–(41). If we
denote the minimum generation capacity of the th PV bus by

, then the new generations would need to satisfy [cf.
(4)]

(42)

. Using the definition of the scalar given by
(3) in (42), it follows that the constraints to enforce the lower
dispatching limits would be

(43)

. Note that only one such constraint
would really need to be enforced, namely that for which

is smallest, since the remaining
would then be necessarily satisfied. Moreover, when the gener-
ator corresponding to that constraint reaches its lowest capacity
limit during optimization iterations, it is excluded from the
distributed slack formulation (3), thus providing the freedom
required for rest of the generators to participate in further load
shedding. This can be achieved by placing an outer loop on
the optimization problem (26)–(41) that gets activated when
a generator lower dispatch limit given by (43) is reached and
reinitializes the problem with the modified slack, that excludes
the binding generator. Recall that our goal is to quickly screen
multiple contingencies to identify the severe ones. A reasonably
flexible and practical slack mechanism as the one we adopt, is
sufficient to serve our goal.
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In the present formulation, we aim to minimize the line out-
ages (sum or indicator variables) that result in a failure having
severity greater than . Another related formulation that can
address our network vulnerability problem is where one aims to
find the maximum possible failure severity when at most
number of lines are removed from service. Although both these
formulations carry the same conceptual flavor, they are different
problemsdepending on the values that the user defined parame-
ters and take. Mathematically, the latter formulation
has the same structure as (26)–(41), except that the objective is
now replaced by

(44)

and the constraint (41) is replaced by

(45)

while keeping other constraints intact.

D. Relaxation of Indicator Variables

The formulation in (26)–(41) is an MINLP problem, which
is known to be a very hard problem to solve. General purpose
MINLP solvers are only of limited availability and remain as
research projects. In this work, we use a continuous relaxation
technique, where we replace the binary line indicator variables
with continuous variables in the [0,1] range. In other words, we
allow partial line outages by letting

(46)

The drawback of the relaxation technique is that the optimal
solution to the continuous problem can be far away from the
optimal solution to the discrete problem. Even when they are
close, mapping the continuous solution to a feasible discrete so-
lution may be a challenge. This drawback, however, has a silver
lining for the contingency screening problem. For contingency
screening, it would be preferable to provide a list of system
weaknesses, as opposed to a single weakness. For instance, if
any three broken lines out of a group of five lines might cause a
blackout, it would be more valuable to detect the group of five
lines instead of detecting the three-line combination that causes
the most severe blackout. As we discuss later, continuous re-
laxation tends to identify these groups of lines. It is still im-
portant to develop algorithms to solve the MINLP formulation
in (26)–(41), however the relaxation method employed in this
paper validates the effectiveness of our proposed model.

Note that the discussion on obtaining the best load shedding
strategy as in Section II-B is applicable for any fixed network
topology (as long as the network remains connected). Thus it
holds valid for the model with continuous variables. Using ei-
ther formulation (26)–(41) or (44)–(45) with the integrality con-
straint relaxed, in the first stage of the screening process the crit-
ical lines for system security are identified as the ones that have
non-zero ’s associated with them. In the second stage of our
analysis, only such lines are considered for a detailed

Fig. 2. Three-bus system.

study, where is the number of lines identified and may take
values from 1 through . In this second stage the indicator vari-
ables are not relaxed; they take on true integer values.

Here it is appropriate to comment on the range of values for
the relaxed indicator variables that may be expected during the
first stage identification analysis. In particular, we would like to
be sure that nonzero values are meaningful in some sense, and
that spurious and confusing values do not occur. In formula-
tion (26)–(41) we note that the sum of the values are minimized,
and if changing a line’s status does not contribute to satisfying
the constraints, the optimization will tend to make the values
identically zero. This is what we observe. In the 30-bus, 41-line
example we consider later, we note that the solution for the in-
dicator vector comprises 38 elements exactly equal to zero, one
element exactly equal to 1.0, and two elements with values close
to 1.0 (namely, 0.99 and 0.83). Somewhat in contrast, the formu-
lation (44)–(45) does not directly minimize the sum of indicator
vector values; the sum is specified in a constraint. In some cases
it is possible that unimportant lines may be indicated by nonzero
values. For example, if we pose the problem of finding the most
severe N-3 event and this event is actually equivalent to an N-2
event (i.e., there is no N-3 event more severe than a particular
N-2 event), then the two critical lines will be clearly identified,
but there may be other lines erroneously identified with nonzero
indicator values. In this latter formulation, some judgment is re-
quired: the higher-valued indicator variables indicate the most
important lines.

III. EXAMPLES

To illustrate the application of the ideas discussed in
Section II, we first consider a three-bus system (Fig. 2), fol-
lowed by the IEEE 30-bus system (Fig. 7).

A. Three-Bus System

This small system is convenient for an easy graphical visual-
ization of results and to highlight the main aspects of our for-
mulation. Consider the network shown in Fig. 2, which has two
generators and a single constant power factor load. The network
data and the nominal power flow solution are summarized in
Table VI.

Fig. 3 shows the space of active power injections at buses 2
and 3. Given that the system is lossless, the power injection at



412 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 23, NO. 2, MAY 2008

Fig. 3. Three-bus system: nominal and modified power flow solution space
boundary as defined by the solution in Table I.

TABLE I
THREE-BUS SYSTEM SOLUTION: USING THE FORMULATION (26)–(41)

bus 1 is simply and consideration of another axis
is unnecessary. When all the lines are in service, the power

flow solution space boundary can be traced by a continuation
technique [19] and is identified as . The region enclosed by

contains all possible power flow solutions that the present
network topology (defined by line parameters) supports. The
part of this region relevant to us is the quadrant having
and , given that the devices connected to buses 2 and
3 are a generator and load, respectively. Note that the nominal
operating point lies within this region.

First we perform our analysis by avoiding voltage constraints,
setting p.u. We then raise the limit to examine the
effect of a binding voltage constraint. The generator buses 1
and 2 maintain voltages at 1.0 p.u., and no maximum voltage
constraints are included (or would be needed).

Using the problem formulation (26)–(41), a few critical lines
in this system are identified while ensuring that their removal
will cause a failure having a severity of at least 1 p.u., or equiv-
alently an event that will necessitate at least 1 p.u. of load shed-
ding at bus 3. The corresponding parameter is defined as
1. The initial guess for the solution process was obtained as de-
scribed in Appendix B. The nonzero values of and in the
solution, summarized in Table I, identifies lines 3 and 5 as im-
portant. The values for , and are identically zero.

The first-stage relaxation solution using the values for
and shown in Table I, yield a load bus voltage of 0.55 p.u.;
the phase angles across the lines (that still remain in service)
are within . With both voltage and angle constraints

Fig. 4. Fourth quadrant of Fig. 3.

(38)–(39) inactive, the power flow Jacobian is nontrivially
singular, as discussed in Section II-B. This is shown pictorially
in Fig. 3. With the new network topology, the original boundary

moves to . Note that the original operating point lies
outside this new boundary, and is now infeasible. The solution
identifies point which achieves feasibility again by shedding
the least possible load at bus 3. As the power flow Jacobian
is nontrivially singular, this point lies on .

For clarity, the relevant (fourth) quadrant of Fig. 3 is redrawn
in Fig. 4. The arrow represents the movement of the operating
point from to . Its projection onto the axis corresponds
to the amount of load that is shed at bus 3. Note in Table I
that due to the distributed slack bus mechanism, the generators
have been redispatched in a constant proportion to their nominal
values so as to accommodate the reduction of load at bus 3.

This first stage solution gives a severity of minimum lost
load equal to 1.0 p.u. The second stage analysis is performed
by removing both line 3 and line 5 from service. The resulting
severity is 1.5582 p.u.

Now we use formulation (44)–(45) to maximize the severity
while limiting the number of line outages to be no more than
two (i.e., with ). The values for obtained by the op-
timization algorithm again identify lines 3 and 5 as the most im-
portant. To obtain this solution, which is summarized in Table II,
the same initialization procedure as before is employed. The
load bus voltage is again about 0.55 p.u. The optimization al-
gorithm completely removes lines 3 and 5 from service in order
to achieve the maximum of the objective function. (The values
of for the other three lines are identically zero.) This corre-
sponds to a severity of 1.5582 p.u. load shed at bus 3. Since this
first stage analysis resulted in an integer only solution and no
phase angle limits were reached, the second stage analysis is
not required.

The voltage and angle constraints are inactive for this solution
too, thus making the Jacobian nontrivially singular. It follows
that the new (post load shedding) operating point , as identi-
fied in Fig. 5, lies on the power flow solution space boundary
resulting from a complete removal of lines 3 and 5 from service.
The operating points and , and corresponding boundaries

and are also shown for comparison. Note that first stage
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TABLE II
THREE-BUS SYSTEM SOLUTION: USING THE FORMULATION (44)–(45)

Fig. 5. Three-bus system: nominal and modified power flow solution space
boundary as defined by the solution in Table II.

TABLE III
THE N � 2 ENUMERATION WITH THE THREE-BUS SYSTEM

relaxed solution for formulation (44)–(45) resulted in a higher
value for , than for formulation (26)–(41). Correspondingly,
the feasibility boundary is smaller than , and more load is
shed to reach . Also note that the points and are
collinear due to the incorporation of the distributed slack mech-
anism. That is, for instance, lies on as well as on the line
joining and the origin.

In summary, the algorithms aim to identify a few line failures
that will result in a significant loss of load. A direct anal-
ysis by enumeration, which is easy on this small system, is used
to validate the results obtained above. Table III enumerates the
cases where any two lines are removed from service such that
the power flow is infeasible. Other combinations of two simul-
taneous line failures do not lead to power flow infeasibility, and
they are not included in the table. The least amount of load shed-
ding required to regain feasibility is also listed in each case. Note

Fig. 6. Three-bus system: nominal and modified power flow solution space
boundary, load bus voltage constraint boundary, and optimization solution.

that the removal of lines 3 and 5 achieves the highest possible
severity.

We complete this analysis of the simple three-bus system by
considering the effect of a binding voltage constraint. When

is set to 0.8 p.u., solutions to both the optimization for-
mulations observe a binding lower voltage constraint (38), when
other parameters are set as p.u. and . Then at
the solutions, the power flow Jacobian is only trivially singular
and the new (post load shedding) operating point does not lie on
the power flow solution space boundary. Instead it lies on the
manifold defined by . Such a solution obtained using
formulation (26)–(41) is depicted graphically in Fig. 6. Curve

defines a boundary of the region where , when all
lines are in service (nominal case). This region is a subset of the
complete power flow solution space, whose boundary is shown
as . The optimization formulation identifies lines 3 and 5,
with their relaxation parameters as and . Using
these values, moves to , and to . The boundary
encloses solutions having , at this network topology.
The optimization identifies the new operating point that lies
on , thus making sure that the voltage constraint is not vi-
olated, and yet at least 1 p.u. load is shed. (In this first stage
relaxation formulation, exactly 1 p.u. load is shed.)

In this three-bus system, no single line failure contingency
results in an infeasible operation. The second stage analysis
simply calculates the severity of minimum lost load when both
lines 3 and 5 are removed from service, while enforcing the
voltage constraint. This severity is 1.95 p.u.

B. IEEE 30-Bus System

The IEEE 30-bus system as shown in Fig. 7 is considered for
the identification of lines critical for system security using the
formulation discussed in Section II-C. The generators are dis-
patched in the original system data [28] in such a way that the
system observes an active power balance within the left, right
and the lower parts of the network. To emphasize some impor-
tant aspects of our algorithm, the generator active power injec-
tions are modified so that there is no natural power balance in
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Fig. 7. Optimization solution for the IEEE 30-bus system.

the system subsets. Table VII documents the system data that
are used to obtain the results that follow.

Problem formulation (26)–(41) is used for the contingency
screening. Feasible initial guesses were obtained according to
the procedure described in Appendix B. The solutions were
computed using the solver SNOPT [15], the AMPL modeling
language [25], and the NEOS server for optimization [26], [27].
SNOPT uses a sequential quadratic programming algorithm
suitable for problems with (nonlinear) objective function and is
designed for both nonlinear and linear constraints with sparse
derivatives. The latter is particularly attractive for the optimiza-
tion problem under consideration. The number of iterations
taken by SNOPT to solve the problem varied between 50 and
1000, whereas the number of objective function evaluations
and gradient/Jacobian evaluations ranged from 5 to 272 and
4 to 271, respectively. Since the problem is nonlinear, the
performance of a solver is dependent in part by the initial guess
supplied, and hence the ranges in the number of iterations and
function evaluations for different runs.

An obvious (and trivial) solution to the optimization problem
is the one that isolates all the generation from the loads, by re-
moving radial lines that connect generators (and/or loads) with
rest of the system. Such cases are excluded by not allowing the
radial lines (in this case, lines 13, 16 and 34) to be removed
from service, as our goal is to identify more subtle solutions
than those trivially revealed in the network topology.

Buses having generators attached to them are assumed to have
1.05 p.u. voltage. The base case (all lines in service and no load
shedding) power flow solution results in a voltage profile such
that the lowest bus voltage in the system is 0.92 p.u. (at bus
8). Within the optimization framework, the post contingency
limit of p.u. is enforced on load bus voltages. This
limit is chosen because reliability criteria do not allow lengthy
voltage dips below 80% of nominal [1]. Also, we expect that
either automatic controls or operator action will quickly restore
voltages to nominal levels.

Fig. 7 depicts a first stage relaxation solution based upon an
initial guess provided by the initialization procedure described
in Appendix B. The parameter was set to 2 p.u. This

TABLE IV
IEEE 30-BUS SYSTEM SOLUTION

TABLE V
SELECTED ENUMERATION WITH THE IEEE 30-BUS SYSTEM

amounts to shedding at least 24.4% of the total load in the
system. This solution identifies three transmission lines as
critical ones. (The remaining lines have corresponding values
of equal to zero.) Table IV summarizes this solution. Using
the values of , and provided in this table, the
generation rich lower region of the network is almost unable
to supply loads in the other regions. This results in a sagging
voltage at buses 19 and 20, and they are constrained at .
Effectively, as the solution identifies, loads at this bus and
neighboring buses must be shed to maintain power flow and
voltage feasibility.

Having identified three lines in the first stage analysis, we
now perform the second stage study by only consid-
ering these lines (where is now 3, rather than 41). Note that
the computational burden reduces drastically, for instance, the
number of combinations to analyze reduce from 820 to 3 com-
binations for the study. Table V describes the results
of such an enumeration process, along with the load shedding
to be performed at various buses to just avoid the otherwise
impending system failure. The third column of Table V pro-
vides a load shedding strategy that will just avoid the infeasi-
bility caused by the line removals. The net load reduction due
to the load shedding is accounted for by the distributed slack
mechanism. Mathematically, the process of identifying such a
load shedding strategy corresponds to solving the optimization
problem (9)–(13), with the constraint (13) enforced only on the
lines in service.

Referring to Table V, the removal of lines 28 and 29 lead to
an infeasible operation. The total of 1.2431 p.u. load at buses
17, 19 and 21 must be shed in order to maintain feasibility. This
load shedding would place the voltage at buses 17 and 19 at
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. The system operation is also infeasible when lines 29 and
36 are removed from service. A total of 0.2596 p.u. load must
be shed to maintain feasibility. Voltage at the bus 21 would be
at when this load shedding is executed.

When all the identified lines, namely, lines 28, 29 and 36 are
removed from service at a time (Table V, last row), the system
gets grouped into two subsystems that are connected to each
other by a single line (line 30). Recall that the group at the lower
part of the network is generation rich. This results in a substan-
tial need for load shedding in the other group (2.3413 p.u., which
is 28.5% of the total system load). Even with all the load at buses
17, 19, 20 and 21 being shed along with partial load shedding at
buses 8 and 10, the voltage at bus 18 would be as low as .

IV. CONCLUSION

In this paper, we propose a computationally feasible approach
to detect multiple contingencies resulting in a severe system
failure that does not require a prohibitively expensive enumer-
ation. This approach provides an avenue to undertake a higher
order security analysis on a large-scale power system.

Our approach seeks to identify a few line outages such that the
system will need to shed significant amount of load in order to
continue a feasible operation. It is important to discuss the level
of modeling detail we have used and the impact it may have on
results. By incorporating a nonlinear power flow, a droop-gov-
ernor-motivated distributed slack bus, and using a one-norm
metric, our model is consistent with (or is more detailed than)
the models used in the most closely related literature on calcu-
lating the distance to the power flow feasibility boundary. Nev-
ertheless, it lacks a detailed representation of system dynamics
and therefore our results may be optimistic if the system were
to exhibit instabilities. Alternatively, neglecting fast-acting re-
serves and special remedial action schemes that may be in place,
may make our results pessimistic. We will work in the future to
add some of these features to our model. We believe the model is
valuable in its present form for identifying multiple contingen-
cies that may undergo further scrutiny, perhaps with a detailed
dynamic model.

We should also comment on the practical algorithms to per-
form the computations outlined in this paper. While the results
on our test systems reveal the effectiveness of the problem
formulation, the associated nonlinear optimization problem
offers many challenges for larger (continental size) problems.
Due to the nonlinearity of power flow equations and other
constraints, the resulting optimization problem is in general
nonconvex. Thus the solution obtained corresponds to a local
optimum, depending upon the initial guess, the solver used and
complexity of the power network under consideration. We have
posed our problem in a worst-case optimization framework, but
the nonconvexity inherent in the model suggests that we cannot
prove the result is indeed the worst case result. We would
like to point out that this issue of nonconvexity applies to all
optimization problems that use a nonlinear model for the power
grid, including traditional economic-focused optimal power
flows, security margin calculations, etc., although one rarely
encounters this caveat mentioned in the literature. (See [20] for
a discussion of the impact of nonconvexity in the context of
electricity markets.)

TABLE VI
THREE-BUS SYSTEM DATA (NOMINAL POWER FLOW)

The advantage of studying the test systems presented in this
paper is that the results up to can be verified by complete
enumeration. The removal of lines 28 and 29 that we identify as
the worst case in the IEEE 30-bus example is confirmed by
complete enumeration of all possible 2-line outages (excluding
the ones that result in system islanding). Our approach for de-
termining initial guesses, outlined in Appendix B, has worked
well so far, but we will need to keep the issue of nonconvexity
in mind as we develop algorithms for large-scale systems. Spe-
cial algorithms need to be developed since commercial power
flows do not presently perform the calculations we have devel-
oped here. The state of the art in high performance computing
provides a platform to efficiently deal with large, complex and
nonconvex problems. We are currently working on algorithms
that can efficiently exploit such platforms.

APPENDIX A
EXAMPLE SYSTEM DATA

This appendix summarizes the data used for the three-bus
system and the IEEE 30-bus system, used in this paper.
Tables VI and VII include the network parameters and the
nominal power flow solution for these two systems respec-
tively. Note that a few PV buses in the 30-bus system have local
loads connected. Such buses are considered as PV buses with
the nominal generation as the net nominal injection. In other
words, they are assumed to not have any ability to perform load
shedding. However a slight modification to (4)–(6) can handle
the shedding of loads local to their generation.

APPENDIX B
OBTAINING FEASIBLE INITIAL GUESSES

Nonconvexity of the optimization formulation (26)–(41)
demands good (feasible) initial guesses to obtain convergence.
Such initial guesses can be obtained by using simplified
problem formulations of the main problem. One such approach
is outlined here and is used to obtain the solutions discussed in
Sections III-A and B.

Authors discuss in [12] that the problem of contingency
screening can be formulated using spectral graph partitioning
approach and simplified power flow. In that formulation, all
the bus voltages are assumed to be at 1 p.u., however the
nonlinearity in terms of the angles is fully considered. Solu-
tions obtained using that approach can be processed further
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TABLE VII
IEEE 30-BUS SYSTEM DATA (NOMINAL POWER FLOW)

to provide feasible initial guesses to the optimization problem
(26)–(41), as discussed below.

One can note just by inspection of the three-bus system that
the most severe blackout is obtained by removing lines 2–5 from
the network as it will isolate the load from generation. Such a sit-
uation can be systematically identified by the graph theory based
algorithm discussed in [12] for a larger system. For example, a
significant blackout is obtained by removing lines 28, 29, 30 and
36 for the IEEE 30-bus system, as identified in [12]. By allowing
the line parameter associated with only these lines to vary, the
initialization process poses the problem: what is the most (lo-
cally) severe failure that can be obtained by partially removing

only these lines from service? This problem can be described
mathematically in an optimization framework as

(47)

such that constraints (10)–(13) and (15)–(23) are satisfied along
with and . The nominal power flow
solution (Tables VI and VII) provides an initial guess for this
initialization procedure. Parameter is set to 0.9, a value
close to but less than one, and is set to 0.5, a small positive
value, to avoid graph partitioning and/or trivial solutions. (One
trivial/undesired solution is

; thus making the objective function zero.) This approach has
been used to obtain solutions discussed in Sections III-A and B

We note that there are other ways to obtain feasible initial
guesses for the optimization problem (26)–(41). One way fea-
tures solving the simplified problem

(48)

such that constraints (10)–(13) and (16)–(23) are satisfied along
with and . The nom-
inal power flow solution provides an initial guess for this initial-
ization procedure. Random starting guesses have also produced
solutions to (48).
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